Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)ABSTRACT In order to support experimentation with full-duplex (FD) wireless, we recently integrated two generations of FD radios in the open-access ORBIT and COSMOS testbeds. First, we integrated a customized 1st generation (Gen-1) narrowband FD radio in the indoor ORBIT testbed. Then, we integrated two 2 nd generation (Gen-2) wideband FD radios in the city-scale PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a remotely accessible compute node. The Gen-1/Gen-2 RF SI canceller box includes an RF canceller printed circuit board (PCB) which emulates a customized integrated circuit (IC) RF canceller implementation. The amplitude- and phase-based Gen-1 narrowband RF canceller achieves 40 dB RF SIC across 5 MHz. The Gen-2 wideband canceller is based on the technique of frequency-domain equalization (FDE) and achieves 50 dB RF SI cancellation (SIC) across 20 MHz. In this paper, we present the design and testbed integration of the two generations of FD radios. We then present example experiments that can be remotely run and modified by experimenters. Finally, we discuss future improvements and potential FD wireless experiments that can be supported by these open-access FD radios integrated in the COSMOS testbed.more » « less
-
null (Ed.)ABSTRACT To support experimentation with full-duplex (FD) wireless, we recently integrated two FlexICoN Gen-2 wideband FD radios in the open-access, city-scale NSF PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio, and a remotely accessible compute node. The RF SI canceller box includes an RF canceller printed circuit board which emulates an integrated circuit implementation based on the technique of frequency-domain equalization. The Gen-2 canceller box can achieve up to 50 dB RF SI cancellation across 20 MHz bandwidth. In this demo, we present the design and implementation of the open-acccess, remotely accessible FD radios that are integrated in the indoor COSMOS Sandbox 2 at Columbia University. We also demonstrate example experiments that are available to researchers, where demo participants can observe the visualized performance of the open-access FD radiosmore » « less
-
In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband Fmore » « less
An official website of the United States government
